Tepache
15 de junio de 2009 | Autor: admin
Para los que se quejaron de la anterior receta de tepache que publicamos. Aquí les dejamos esta receta que esperamos sea de su total agrado.
MATERIAL: Cuchillo cebollero, recipiente de plástico 4 litros,
SUSTANCIAS: Piña semimadura, piloncillo (un pilón) agua.
Para: 4 personas
Ingredientes:
1 piña entera madura (de alrededor 1 ½ kilogramo)
12 tazas de agua (3 litros)
600 gramos de piloncillo o azúcar morena
1 ramita de canela de unos 8 cm.
3 clavos de olor
Elaboración:
Lavar la piña perfectamente, quitar el tallo y cortar el resto en trozos grandes incluso con la cáscara.
Colocar los pedazos de piña en un recipiente grande y agregar 8 tazas de agua, el piloncillo, la canela y los clavos.
Tapar y dejar reposar en un sitio caliente durante 48 horas.
Colar el líquido resultante y agregar las otras 4 tazas de agua.
O, si se prefiere, añadir 1 taza (½ lt.) de cerveza clara y dejar reposar otras 12 horas.
Colar y añadir 3 tazas (3/4 lt) de agua.
Servir el tepache bien frío con mucho hielo.
Tip: Se recomienda que el recipiente en el que se deja fermentar la bebida sea de barro, y que se deje en un lugar caliente.
OBSERVACIONES:
CONCLUSIONES:
A modo de ejemplo, las levaduras oxidan la glucosa en ausencia de aire del modo siguiente:
C6H1206 ——» 2 CH3CH2OH + 2 CO2 + 57 kcal
Glucosa Etanol Dióxido Energía
jueves, 28 de abril de 2011
Entrada atrasada de la semana 14 actividad del jueves
Semana 14 jueves
Y tú, ¿cómo te alimentas?
¿Cómo se conservan los alimentos?
Equipo PROTEINAS
1 Las proteínas son biomoléculas formadas por cadenas lineales de aminoácidos.
Las proteínas son biopolímeros, es decir, están constituidas por gran número de unidades estructurales.
Las proteínas ocupan un lugar de máxima importancia entre las moléculas constituyentes de los seres vivos (biomoléculas). Prácticamente todos los procesos biológicos dependen de la presencia o la actividad de este tipo de moléculas. Bastan algunos ejemplos para dar idea de la variedad y trascendencia de las funciones que desempeñan.
2 Estas son macromoléculas compuestas por carbono, hidrógeno, oxígeno y nitrógeno. La mayoría también contienen azufre y fósforo. Las mismas están formadas por la unión de varios aminoácidos, unidos mediante enlaces peptídicos. El orden y disposición de los aminoácidos en una proteína depende del código genético, ADN, de la persona.
Las proteínas constituyen alrededor del 50% del peso seco de los tejidos y no existe proceso biológico alguno que no dependa de la participación de este tipo de sustancias.
Las funciones principales de las proteínas son:
• Ser esenciales para el crecimiento. Las grasas y carbohidratos no las pueden sustituir, por no contener nitrógeno.
• Proporcionan los aminoácidos esenciales fundamentales para la síntesis tisular.
• Son materia prima para la formación de los jugos digestivos, hormonas, proteínas plasmáticas, hemoglobina, vitaminas y enzimas.
• Funcionan como amortiguadores, ayudando a mantener la reacción de diversos medios como el plasma.
• Actúan como catalizadores biológicos acelerando la velocidad de las reacciones químicas del metabolismo. Son las enzimas.
Actúan como transporte de gases como oxígeno y dióxido de carbono en sangre. (hemoglobina).
• Actúan como defensa, los anticuerpos son proteínas de defensa natural contra infecciones o agentes extraños.
Permiten el movimiento celular a través de la miosina y actina (proteínas contráctiles musculares).
• Resistencia. El colágeno es la principal proteína integrante de los tejidos de sostén.
3 Las proteínas son los materiales que desempeñan un mayor número de funciones en las células de todos los seres vivos. Por un lado, forman parte de la estructura básica de los tejidos (músculos, tendones, piel, uñas, etc.) y, por otro, desempeñan funciones metabólicas y reguladoras (asimilación de nutrientes, transporte de oxígeno y de grasas en la sangre, inactivación de materiales tóxicos o peligrosos, etc.). También son los elementos que definen la identidad de cada ser vivo, ya que son la base de la estructura del código genético (ADN) y de los sistemas de reconocimiento de organismos extraños en el sistema inmunitario.
Son macromoléculas orgánicas, constituidas básicamente por carbono (C), hidrógeno (H), oxígeno (O) y nitrógeno (N); aunque pueden contener también azufre (S) y fósforo (P) y, en menor proporción, hierro (Fe), cobre (Cu), magnesio (Mg), yodo (I), etc...
Estos elementos químicos se agrupan para formar unidades estructurales llamados AMINOÁCIDOS, a los cuales podríamos considerar como los "ladrillos de los edificios moleculares proteicos".
Se clasifican, de forma general, en Holoproteinas y Heteroproteinas según estén formadas respectivamente sólo por aminoácidos o bien por aminoácidos más otras moléculas o elementos adicionales no aminoacídicos
4 Clasificación
Según su forma
Fibrosas: presentan cadenas polipeptídicas largas y una estructura secundaria atípica. Son insolubles en agua y en disoluciones acuosas. Algunos ejemplos de éstas son queratina, colágeno y fibrina.
Globulares: se caracterizan por doblar sus cadenas en una forma esférica apretada o compacta dejando grupos hidrófobos hacia adentro de la proteína y grupos hidrófilos hacia afuera, lo que hace que sean solubles en disolventes polares como el agua. La mayoría de las enzimas, anticuerpos, algunas hormonas y proteínas de transporte, son ejemplos de proteínas globulares.
Mixtas: posee una parte fibrilar (comúnmente en el centro de la proteína) y otra parte globular (en los extremos) Según su composición química
Simples: su hidrólisis sólo produce aminoácidos. Ejemplos de estas son la insulina y el colágeno (globulares y fibrosas).
Conjugadas o heteroproteínas: su hidrólisis produce aminoácidos y otras sustancias no proteicas con un grupo prostético.
5 Las proteínas desempeñan un papel fundamental para la vida y son las biomoléculas más versátiles y más diversas. Son imprescindibles para el crecimiento del organismo. Realizan una enorme cantidad de funciones diferentes, entre las que destacan:
• Inmunológica (anticuerpos),
• Enzimática (sacarasa y pepsina),
• Contráctil (actina y miosina).
• Homeostática: colaboran en el mantenimiento del pH,
• Transducción de señales (rodopsina)
• Protectora o defensiva (trombina y fibrinógeno)
Las proteínas están formadas por aminoácidos.
6 Las proteínas son compuestos químicos muy complejos que se encuentran en todas las células vivas: en la sangre, en la leche, en los huevos y en toda clase de semillas y pólenes. Hay ciertos elementos químicos que todas ellas poseen, pero los diversos tipos de proteínas los contienen en diferentes cantidades. En todas se encuentran un alto porcentaje de nitrógeno, así como de oxígeno, hidrógeno y carbono. En la mayor parte de ellas existe azufre, y en algunas fósforo y hierro.
Las carnes, las leches y sus derivados, las frutas y los vegetales requieren de la técnica de congelación que consiste en almacenar los alimentos a temperaturas que varían de 0ºC a 4ºC, esta temperatura no destruye a los microorganismos, pero impiden su reproducción.
Carbohidratos, Lípidos y proteínas
La saponificación es una reacción química entre un ácido graso (o un lípido saponificable, portador de residuos de ácidos grasos) y una base o alcalino, en la que se obtiene como principal producto la sal de dicho ácido y de dicha base. Estos compuestos tienen la particularidad de ser anfipáticos, es decir tienen una parte polar y otra apolar (o no polar), con lo cual pueden interactuar con sustancias de propiedades dispares. Por ejemplo, los jabones son sales de ácidos grasos y metales alcalinos que se obtienen mediante este proceso.
El método de saponificación en el aspecto industrial consiste en hervir la grasa en grandes calderas, añadiendo lentamente sosa cáustica (NaOH), agitándose continuamente la mezcla hasta que comienza esta a ponerse pastosa.
La reacción que tiene lugar es la saponificación y los productos son el jabón y la glicerina:
Grasa + sosa cáustica → jabón + glicerina
Material:
Tripie con tela de alambre con asbesto, lámpara de alcohol, capsula de porcelana, agitador de vidrio, tubo de ensaye, cucharilla de combustión, probeta graduada de 10 ml. tubo de ensaye.
Sustancias: Aceite vegetal, hidróxido de potasio, alcohol etílico, agua.
Procedimiento:
Sacáridos Carbohidratos:
.- Colocar una muestra de la sacarosa en la cucharilla de combustión y colocarla a la flama de la lámpara de alcohol durante cinco minutos. Anotar los cambios observados.
Lípidos
- Medir 5 ml del aceite vegetal y colocar en la capsula de porcelana, agregar un ml, del alcohol etanol y un mililitro del hidróxido de potasio. Agitar cuidadosamente.
- - Calentar la mezcla agitando hasta formar una pasta, enfriar la pasta
- - Medio llenar el tubo de ensayo con agua y colocar una muestra de la pasta, tapar y agitar fuertemente la mezcla. Anotar las observaciones.
- Se formo el jabón?
- Como se puede comprobar la saponificación?
- LA MERA CHIDA & LA CHIDAA (:
Identificación de Proteínas
Material: Lámpara de alcohol, agitador de vidrio, capsula de porcelana, tubo de ensaye, vaso de precipitados de 50 ml.
Sustancias: Albumina de huevo, huevo crudo, acido nítrico, agua.
Procedimiento:
-Colocar en el tubo de ensaye dos mililitros de agua, y adicionar una muestra de albumina de huevo, agitar hasta disolución y agregar cuidadosamente tres gotas del acido nítrico.
-Calentar cuidadosamente la disolución hasta ebullición y anotar los cambios observados.
-Separar la clara del huevo crudo y colocarla en el vaso de precipitados, agregar agua hasta los cincuenta mililitros, agitar hasta disolución.
- Colocar en el tubo de ensaye dos mil litros de la disolución anterior y agregar cuidadosamente tres gotas del acido nítrico.
- Calentar cuidadosamente la disolución del tubo de ensaye hasta ebullición y anotar los cambios observados.
Observaciones:
Sustancias Color inicial Color final
Albumina de huevo
Clara de huevo crudo
Conclusiones: El huevo exploto jajaja
Y tú, ¿cómo te alimentas?
¿Cómo se conservan los alimentos?
Equipo PROTEINAS
1 Las proteínas son biomoléculas formadas por cadenas lineales de aminoácidos.
Las proteínas son biopolímeros, es decir, están constituidas por gran número de unidades estructurales.
Las proteínas ocupan un lugar de máxima importancia entre las moléculas constituyentes de los seres vivos (biomoléculas). Prácticamente todos los procesos biológicos dependen de la presencia o la actividad de este tipo de moléculas. Bastan algunos ejemplos para dar idea de la variedad y trascendencia de las funciones que desempeñan.
2 Estas son macromoléculas compuestas por carbono, hidrógeno, oxígeno y nitrógeno. La mayoría también contienen azufre y fósforo. Las mismas están formadas por la unión de varios aminoácidos, unidos mediante enlaces peptídicos. El orden y disposición de los aminoácidos en una proteína depende del código genético, ADN, de la persona.
Las proteínas constituyen alrededor del 50% del peso seco de los tejidos y no existe proceso biológico alguno que no dependa de la participación de este tipo de sustancias.
Las funciones principales de las proteínas son:
• Ser esenciales para el crecimiento. Las grasas y carbohidratos no las pueden sustituir, por no contener nitrógeno.
• Proporcionan los aminoácidos esenciales fundamentales para la síntesis tisular.
• Son materia prima para la formación de los jugos digestivos, hormonas, proteínas plasmáticas, hemoglobina, vitaminas y enzimas.
• Funcionan como amortiguadores, ayudando a mantener la reacción de diversos medios como el plasma.
• Actúan como catalizadores biológicos acelerando la velocidad de las reacciones químicas del metabolismo. Son las enzimas.
Actúan como transporte de gases como oxígeno y dióxido de carbono en sangre. (hemoglobina).
• Actúan como defensa, los anticuerpos son proteínas de defensa natural contra infecciones o agentes extraños.
Permiten el movimiento celular a través de la miosina y actina (proteínas contráctiles musculares).
• Resistencia. El colágeno es la principal proteína integrante de los tejidos de sostén.
3 Las proteínas son los materiales que desempeñan un mayor número de funciones en las células de todos los seres vivos. Por un lado, forman parte de la estructura básica de los tejidos (músculos, tendones, piel, uñas, etc.) y, por otro, desempeñan funciones metabólicas y reguladoras (asimilación de nutrientes, transporte de oxígeno y de grasas en la sangre, inactivación de materiales tóxicos o peligrosos, etc.). También son los elementos que definen la identidad de cada ser vivo, ya que son la base de la estructura del código genético (ADN) y de los sistemas de reconocimiento de organismos extraños en el sistema inmunitario.
Son macromoléculas orgánicas, constituidas básicamente por carbono (C), hidrógeno (H), oxígeno (O) y nitrógeno (N); aunque pueden contener también azufre (S) y fósforo (P) y, en menor proporción, hierro (Fe), cobre (Cu), magnesio (Mg), yodo (I), etc...
Estos elementos químicos se agrupan para formar unidades estructurales llamados AMINOÁCIDOS, a los cuales podríamos considerar como los "ladrillos de los edificios moleculares proteicos".
Se clasifican, de forma general, en Holoproteinas y Heteroproteinas según estén formadas respectivamente sólo por aminoácidos o bien por aminoácidos más otras moléculas o elementos adicionales no aminoacídicos
4 Clasificación
Según su forma
Fibrosas: presentan cadenas polipeptídicas largas y una estructura secundaria atípica. Son insolubles en agua y en disoluciones acuosas. Algunos ejemplos de éstas son queratina, colágeno y fibrina.
Globulares: se caracterizan por doblar sus cadenas en una forma esférica apretada o compacta dejando grupos hidrófobos hacia adentro de la proteína y grupos hidrófilos hacia afuera, lo que hace que sean solubles en disolventes polares como el agua. La mayoría de las enzimas, anticuerpos, algunas hormonas y proteínas de transporte, son ejemplos de proteínas globulares.
Mixtas: posee una parte fibrilar (comúnmente en el centro de la proteína) y otra parte globular (en los extremos) Según su composición química
Simples: su hidrólisis sólo produce aminoácidos. Ejemplos de estas son la insulina y el colágeno (globulares y fibrosas).
Conjugadas o heteroproteínas: su hidrólisis produce aminoácidos y otras sustancias no proteicas con un grupo prostético.
5 Las proteínas desempeñan un papel fundamental para la vida y son las biomoléculas más versátiles y más diversas. Son imprescindibles para el crecimiento del organismo. Realizan una enorme cantidad de funciones diferentes, entre las que destacan:
• Inmunológica (anticuerpos),
• Enzimática (sacarasa y pepsina),
• Contráctil (actina y miosina).
• Homeostática: colaboran en el mantenimiento del pH,
• Transducción de señales (rodopsina)
• Protectora o defensiva (trombina y fibrinógeno)
Las proteínas están formadas por aminoácidos.
6 Las proteínas son compuestos químicos muy complejos que se encuentran en todas las células vivas: en la sangre, en la leche, en los huevos y en toda clase de semillas y pólenes. Hay ciertos elementos químicos que todas ellas poseen, pero los diversos tipos de proteínas los contienen en diferentes cantidades. En todas se encuentran un alto porcentaje de nitrógeno, así como de oxígeno, hidrógeno y carbono. En la mayor parte de ellas existe azufre, y en algunas fósforo y hierro.
Las carnes, las leches y sus derivados, las frutas y los vegetales requieren de la técnica de congelación que consiste en almacenar los alimentos a temperaturas que varían de 0ºC a 4ºC, esta temperatura no destruye a los microorganismos, pero impiden su reproducción.
Carbohidratos, Lípidos y proteínas
La saponificación es una reacción química entre un ácido graso (o un lípido saponificable, portador de residuos de ácidos grasos) y una base o alcalino, en la que se obtiene como principal producto la sal de dicho ácido y de dicha base. Estos compuestos tienen la particularidad de ser anfipáticos, es decir tienen una parte polar y otra apolar (o no polar), con lo cual pueden interactuar con sustancias de propiedades dispares. Por ejemplo, los jabones son sales de ácidos grasos y metales alcalinos que se obtienen mediante este proceso.
El método de saponificación en el aspecto industrial consiste en hervir la grasa en grandes calderas, añadiendo lentamente sosa cáustica (NaOH), agitándose continuamente la mezcla hasta que comienza esta a ponerse pastosa.
La reacción que tiene lugar es la saponificación y los productos son el jabón y la glicerina:
Grasa + sosa cáustica → jabón + glicerina
Material:
Tripie con tela de alambre con asbesto, lámpara de alcohol, capsula de porcelana, agitador de vidrio, tubo de ensaye, cucharilla de combustión, probeta graduada de 10 ml. tubo de ensaye.
Sustancias: Aceite vegetal, hidróxido de potasio, alcohol etílico, agua.
Procedimiento:
Sacáridos Carbohidratos:
.- Colocar una muestra de la sacarosa en la cucharilla de combustión y colocarla a la flama de la lámpara de alcohol durante cinco minutos. Anotar los cambios observados.
Lípidos
- Medir 5 ml del aceite vegetal y colocar en la capsula de porcelana, agregar un ml, del alcohol etanol y un mililitro del hidróxido de potasio. Agitar cuidadosamente.
- - Calentar la mezcla agitando hasta formar una pasta, enfriar la pasta
- - Medio llenar el tubo de ensayo con agua y colocar una muestra de la pasta, tapar y agitar fuertemente la mezcla. Anotar las observaciones.
- Se formo el jabón?
- Como se puede comprobar la saponificación?
- LA MERA CHIDA & LA CHIDAA (:
Identificación de Proteínas
Material: Lámpara de alcohol, agitador de vidrio, capsula de porcelana, tubo de ensaye, vaso de precipitados de 50 ml.
Sustancias: Albumina de huevo, huevo crudo, acido nítrico, agua.
Procedimiento:
-Colocar en el tubo de ensaye dos mililitros de agua, y adicionar una muestra de albumina de huevo, agitar hasta disolución y agregar cuidadosamente tres gotas del acido nítrico.
-Calentar cuidadosamente la disolución hasta ebullición y anotar los cambios observados.
-Separar la clara del huevo crudo y colocarla en el vaso de precipitados, agregar agua hasta los cincuenta mililitros, agitar hasta disolución.
- Colocar en el tubo de ensaye dos mil litros de la disolución anterior y agregar cuidadosamente tres gotas del acido nítrico.
- Calentar cuidadosamente la disolución del tubo de ensaye hasta ebullición y anotar los cambios observados.
Observaciones:
Sustancias Color inicial Color final
Albumina de huevo
Clara de huevo crudo
Conclusiones: El huevo exploto jajaja
Semana 15 actividad del martes!
Sintesis De Acido Acetilsalicilico Por Un Metodo De Quimica Verde
Práctica 7
OBTENCIÓN DEL ÁCIDO ACETILSALICÍLICO POR MEDIO DE UN PROCESO DE QUÍMICA VERDE.
Universidad Nacional Autónoma de México
Facultad de Química
Resumen
En esta práctica se llevo a cabo la obtención de acido acetilsalicílico por medio de una reacción de esterificación de un derivado de acido carboxílico, este proceso fue llevado a cabo de tal manera que no se afectara al medio ambiente, utilizando en forma eficiente las materias primas, eliminando la generación de desechos y evitando el uso de reactivos y disolventes tóxicos y/o peligrosos.
Introducción
El ácido acetilsalicílico se prepara por acetilación del ácido salicílico mediante un proceso denominado esterificación. La esterificación consiste en la reacción de un grupo carboxilo (-COOH) y un grupo hidroxilo (-OH) para formar un grupo éster (–COOR). En este caso la fuente del grupo –OH es el fenol del ácido salicílico, y el grupo acetilo (-COCH3) proviene del anhídrido acético.
El ácido acetilsalicílico es un éster de ácido acético y ácido salicílico (que actua como alcohol). Aunque se pueden obtener ésteres de ácido por interacción directa del ácido acético con un alcohol o un fenol, se suele usar un derivado de acido, anhídrido acético, como agente acetilante. Éste permite producir ésteres de acetato con velocidad mucho mayor, que por la acción directa del ácido acético.
El ácido salicílico reacciona muy lentamente con el anhídrido acético a ebullición, pero si se agregan unas pocas gotas de ácido sulfúrico concentrado, la reacción procede a temperatura ambiente y además se desarrolla rápidamente con un considerable desprendimiento de calor. Acido Acetilsalicilico
ACIDO ACETILSALICILICO
El ácido acetilsalicílico o AAS (C9H8O4), también conocido con el nombre de Aspirina®, es un fármaco de la familia de los salicilatos, usado frecuentemente como antiinflamatorio, analgésico, para el alivio del dolor leve y moderado, antipirético para reducir la fiebre y antiagregante plaquetario indicado para personas con alto riesgo de coagulación sanguínea, principalmente individuos que ya han tenido un infarto agudo de miocardio.2 3
Los efectos adversos de la aspirina son principalmente gastrointestinales, es decir, úlcera pépticas gástricas y sangrado estomacal. En pacientes menores de 14 años se ha dejado de usar la aspirina para el control de los síntomas de la gripe o de la varicela debido al elevado riesgo de contraer el síndrome de Reye.
El ácido salicílico o salicilato, producto metabólico de la aspirina, es un ácido orgánico simple con un pKa de 3,0. La aspirina, por su parte, tiene un pKa de 3,5 a 25 °C. Tanto la aspirina como el salicilato sódico son igualmente efectivos como antiinflamatorios, aunque la aspirina tiende a ser más eficaz como analgésico.
La makesia es la producción del un ácido acetilsalicílico, se protona el oxígeno para obtener un electrófilo más fuerte.
La reacción química de la síntesis de la aspirina se considera una esterificación. El ácido salicílico es tratado con anhídrido acético, un compuesto derivado de un ácido, lo que hace que el grupo alcohol del salicilato se convierta en un grupo acetilo (salicilato-OH → salicilato-OCOCH3). Este proceso produce aspirina y ácido acético, el cual se considera un subproducto de la reacción. La producción de ácido acético es la razón por la que la aspirina con frecuencia huele como a vinagre.
Como catalizador casi siempre se usan pequeñas cantidades de ácido sulfúrico y ocasionalmente ácido fosfórico. El método es una de las reacciones más usadas en los laboratorios de química en universidades de pregrado.
¿Que son los medicamentos?
Equipo
1 Es un fármaco o principio activo o conjunto de ellos, integrado en una forma farmacéutica, dotado de propiedades. Prevenir, diagnosticar, tratar, aliviar o curar enfermedades, síntomas o estados patológicos.
2 Los medicamentos son sustancias que ayudan a proteger nuestro organismo de enfermedades y en algunas ocasiones sirven de suplemento .
3 Son todos aquellos que ayudan a los seres vivos con las enfermedades o alguna otra función.
4 Toda sustancia química purificada utilizada en la prevención, diagnóstico, tratamiento, mitigación y cura de una enfermedad; para evitar la aparición de un proceso fisiológico no deseado; o para modificar condiciones fisiológicas con fines específicos.
5 es una sustancia con propiedades para el tratamiento o la prevención de enfermedades en los seres humanos. También se consideran medicamentos aquellas substancias que se utilizan o se administran con el objetivo de restaurar, corregir o modificar funciones fisiológicas del organismo o aquellas para establecer un diagnóstico medico.
6 Un medicamento es uno o más fármacos, integrados en una forma farmacéutica, presentado para expendio y uso industrial o clínico, y destinado para su utilización en las personas o en los animales, dotado de propiedades que permitan el mejor efecto farmacológico de sus componentes con el fin de prevenir, aliviar o mejorar enfermedades, o para modificar estados fisiológicos.
OBTENCION DEL ACIDO ACETIL SALICILICO
SUSTANCIAS: Acido salicílico, anhídrido acético, acido fosfórico.
Material: capsula de porcelana, agitador de vidrio, cristalizador, papel filtro, embudo de filtración, matraz erlenmeyer de 250 ml.
Procedimiento:
- Colocar cinco mililitros del anhídrido acético en la capsula de porcelana.
- -Agregar una cucharada pequeña del acido salicílico al anhídrido acético de la capsula de porcelana, agitar hasta disolución,
- - Agregar 0.5 miLIlitros del acido fosfórico a la mezcla anterior.
- - Calentar cuidadosamente y agitando la mezcla hasta ebullición, enfriar la mezcla.
- Filtrar la mezcla recibiendo el liquido filtrado en el cristalizador y esperar hasta la formación de cristales del acido acetilsalicilico.
- OBSERVACIONES:
CONCLUSIONES:
Con toda la sinceridad el salón apestaba muy feo pero se logro la cristalización
Práctica 7
OBTENCIÓN DEL ÁCIDO ACETILSALICÍLICO POR MEDIO DE UN PROCESO DE QUÍMICA VERDE.
Universidad Nacional Autónoma de México
Facultad de Química
Resumen
En esta práctica se llevo a cabo la obtención de acido acetilsalicílico por medio de una reacción de esterificación de un derivado de acido carboxílico, este proceso fue llevado a cabo de tal manera que no se afectara al medio ambiente, utilizando en forma eficiente las materias primas, eliminando la generación de desechos y evitando el uso de reactivos y disolventes tóxicos y/o peligrosos.
Introducción
El ácido acetilsalicílico se prepara por acetilación del ácido salicílico mediante un proceso denominado esterificación. La esterificación consiste en la reacción de un grupo carboxilo (-COOH) y un grupo hidroxilo (-OH) para formar un grupo éster (–COOR). En este caso la fuente del grupo –OH es el fenol del ácido salicílico, y el grupo acetilo (-COCH3) proviene del anhídrido acético.
El ácido acetilsalicílico es un éster de ácido acético y ácido salicílico (que actua como alcohol). Aunque se pueden obtener ésteres de ácido por interacción directa del ácido acético con un alcohol o un fenol, se suele usar un derivado de acido, anhídrido acético, como agente acetilante. Éste permite producir ésteres de acetato con velocidad mucho mayor, que por la acción directa del ácido acético.
El ácido salicílico reacciona muy lentamente con el anhídrido acético a ebullición, pero si se agregan unas pocas gotas de ácido sulfúrico concentrado, la reacción procede a temperatura ambiente y además se desarrolla rápidamente con un considerable desprendimiento de calor. Acido Acetilsalicilico
ACIDO ACETILSALICILICO
El ácido acetilsalicílico o AAS (C9H8O4), también conocido con el nombre de Aspirina®, es un fármaco de la familia de los salicilatos, usado frecuentemente como antiinflamatorio, analgésico, para el alivio del dolor leve y moderado, antipirético para reducir la fiebre y antiagregante plaquetario indicado para personas con alto riesgo de coagulación sanguínea, principalmente individuos que ya han tenido un infarto agudo de miocardio.2 3
Los efectos adversos de la aspirina son principalmente gastrointestinales, es decir, úlcera pépticas gástricas y sangrado estomacal. En pacientes menores de 14 años se ha dejado de usar la aspirina para el control de los síntomas de la gripe o de la varicela debido al elevado riesgo de contraer el síndrome de Reye.
El ácido salicílico o salicilato, producto metabólico de la aspirina, es un ácido orgánico simple con un pKa de 3,0. La aspirina, por su parte, tiene un pKa de 3,5 a 25 °C. Tanto la aspirina como el salicilato sódico son igualmente efectivos como antiinflamatorios, aunque la aspirina tiende a ser más eficaz como analgésico.
La makesia es la producción del un ácido acetilsalicílico, se protona el oxígeno para obtener un electrófilo más fuerte.
La reacción química de la síntesis de la aspirina se considera una esterificación. El ácido salicílico es tratado con anhídrido acético, un compuesto derivado de un ácido, lo que hace que el grupo alcohol del salicilato se convierta en un grupo acetilo (salicilato-OH → salicilato-OCOCH3). Este proceso produce aspirina y ácido acético, el cual se considera un subproducto de la reacción. La producción de ácido acético es la razón por la que la aspirina con frecuencia huele como a vinagre.
Como catalizador casi siempre se usan pequeñas cantidades de ácido sulfúrico y ocasionalmente ácido fosfórico. El método es una de las reacciones más usadas en los laboratorios de química en universidades de pregrado.
¿Que son los medicamentos?
Equipo
1 Es un fármaco o principio activo o conjunto de ellos, integrado en una forma farmacéutica, dotado de propiedades. Prevenir, diagnosticar, tratar, aliviar o curar enfermedades, síntomas o estados patológicos.
2 Los medicamentos son sustancias que ayudan a proteger nuestro organismo de enfermedades y en algunas ocasiones sirven de suplemento .
3 Son todos aquellos que ayudan a los seres vivos con las enfermedades o alguna otra función.
4 Toda sustancia química purificada utilizada en la prevención, diagnóstico, tratamiento, mitigación y cura de una enfermedad; para evitar la aparición de un proceso fisiológico no deseado; o para modificar condiciones fisiológicas con fines específicos.
5 es una sustancia con propiedades para el tratamiento o la prevención de enfermedades en los seres humanos. También se consideran medicamentos aquellas substancias que se utilizan o se administran con el objetivo de restaurar, corregir o modificar funciones fisiológicas del organismo o aquellas para establecer un diagnóstico medico.
6 Un medicamento es uno o más fármacos, integrados en una forma farmacéutica, presentado para expendio y uso industrial o clínico, y destinado para su utilización en las personas o en los animales, dotado de propiedades que permitan el mejor efecto farmacológico de sus componentes con el fin de prevenir, aliviar o mejorar enfermedades, o para modificar estados fisiológicos.
OBTENCION DEL ACIDO ACETIL SALICILICO
SUSTANCIAS: Acido salicílico, anhídrido acético, acido fosfórico.
Material: capsula de porcelana, agitador de vidrio, cristalizador, papel filtro, embudo de filtración, matraz erlenmeyer de 250 ml.
Procedimiento:
- Colocar cinco mililitros del anhídrido acético en la capsula de porcelana.
- -Agregar una cucharada pequeña del acido salicílico al anhídrido acético de la capsula de porcelana, agitar hasta disolución,
- - Agregar 0.5 miLIlitros del acido fosfórico a la mezcla anterior.
- - Calentar cuidadosamente y agitando la mezcla hasta ebullición, enfriar la mezcla.
- Filtrar la mezcla recibiendo el liquido filtrado en el cristalizador y esperar hasta la formación de cristales del acido acetilsalicilico.
- OBSERVACIONES:
CONCLUSIONES:
Con toda la sinceridad el salón apestaba muy feo pero se logro la cristalización
jueves, 14 de abril de 2011
Semana 14 actividad del martes!!!
Equipo Y tú, ¿cómo te alimentas? ¿Cómo se conservan los alimentos? PROTEINAS
1
2 De manera balanceada y saludable con una moderación Pues con la refrigeración jajaja Las proteínas son biomoléculas formadas por cadenas lineales de aminoácidos. El nombre proteína proviene de la palabra griega πρώτα ("proteios"), que significa "primario" o del dios Proteo, por la cantidad de formas que pueden tomar
3
4
5
6
Para el jueves:
Por equipo traer un huevo crudo.
1
2 De manera balanceada y saludable con una moderación Pues con la refrigeración jajaja Las proteínas son biomoléculas formadas por cadenas lineales de aminoácidos. El nombre proteína proviene de la palabra griega πρώτα ("proteios"), que significa "primario" o del dios Proteo, por la cantidad de formas que pueden tomar
3
4
5
6
Para el jueves:
Por equipo traer un huevo crudo.
viernes, 8 de abril de 2011
Recapitulacion 12
RECAPITULACION 12
RESUMEN DEL MARTES Y JUEVES
ACLARACION DE DUDAS
EJERCICO
REGISTRO DE ASISTENCIA
EQUIPO RESUMEN
1 El día martes vimos los grupos funcionales presentes en nuestros nutrientes orgánicos.
El día jueves hicimos un experimento con algunos alimentos y jugos , para comprobar si tenían o no almidón: los alimentos como el pan, la papa, tienen almidones esto lo comprobamos con una solución de yodo; y los jugos cítricos ( de naranja o limón) no tiene almidones.
2 El martes vimos cuales eran los grupos funcionales que están presentes en los alimentos
Jueves vimos e hicimos una práctica de identificación de almidones con la papa la tortilla y el pan y cuando reaccionaron los alimentos tomaron otra coloración como morado negro con el yodo .
3 La primera clase de esta semana consistió en definir en cuales eran los grupos funcionales que se encontraban dentro de los nutrientes. Posteriormente la 2da clase hicimos un experimento que incluía papa, tortilla, pan y se probo que cada uno de estos contenía almidón. ^,
4
5 El dia martes vimos los grupos funcionales que están presentes en nuestros nutrientes.
El dia jueves hicimos un experimento para probar si el pan, la papa, la tortilla tenían almidon abue ya me voy :D
6 El día martes investigamos sobre los grupos funcionales que están presentes en los nutrientes que contienen los alimentos que normalmente consumimos.
El día jueves realizamos un experimento para ver cuales alimentos tenían almidón, vitamina C o yodo, y observamos que la mayoría de estos tienen almidón lo que ayuda a realizar el proceso de azúcar y así nuestro cuerpo lo convierte en energía.
Acidos -CO.OH
Aminas-NH2
Cetonas - C=O
Amidas -CO.NH2
Aldehidos –CH=O
http://qimica2112.blogspot.com/
RESUMEN DEL MARTES Y JUEVES
ACLARACION DE DUDAS
EJERCICO
REGISTRO DE ASISTENCIA
EQUIPO RESUMEN
1 El día martes vimos los grupos funcionales presentes en nuestros nutrientes orgánicos.
El día jueves hicimos un experimento con algunos alimentos y jugos , para comprobar si tenían o no almidón: los alimentos como el pan, la papa, tienen almidones esto lo comprobamos con una solución de yodo; y los jugos cítricos ( de naranja o limón) no tiene almidones.
2 El martes vimos cuales eran los grupos funcionales que están presentes en los alimentos
Jueves vimos e hicimos una práctica de identificación de almidones con la papa la tortilla y el pan y cuando reaccionaron los alimentos tomaron otra coloración como morado negro con el yodo .
3 La primera clase de esta semana consistió en definir en cuales eran los grupos funcionales que se encontraban dentro de los nutrientes. Posteriormente la 2da clase hicimos un experimento que incluía papa, tortilla, pan y se probo que cada uno de estos contenía almidón. ^,
4
5 El dia martes vimos los grupos funcionales que están presentes en nuestros nutrientes.
El dia jueves hicimos un experimento para probar si el pan, la papa, la tortilla tenían almidon abue ya me voy :D
6 El día martes investigamos sobre los grupos funcionales que están presentes en los nutrientes que contienen los alimentos que normalmente consumimos.
El día jueves realizamos un experimento para ver cuales alimentos tenían almidón, vitamina C o yodo, y observamos que la mayoría de estos tienen almidón lo que ayuda a realizar el proceso de azúcar y así nuestro cuerpo lo convierte en energía.
Acidos -CO.OH
Aminas-NH2
Cetonas - C=O
Amidas -CO.NH2
Aldehidos –CH=O
http://qimica2112.blogspot.com/
sábado, 2 de abril de 2011
semana 12 Jueves!
Semana 12 Jueves
El Tubo de Crookes es un cono de vidrio con 1 ánodo y 2 cátodos. Es una invención pero mas en parte una innovacion del científico William Crookes en el siglo XIX, y es una versión más evolucionada del desarrollo del Tubo de Geissler.
Descripción y utilización
Consiste en un tubo de vacío por el cual circulan una serie de gases, que al aplicarles electricidad adquieren fluorescencia, de ahí que sean llamados fluorescentes. A partir de este experimento (1895) Crookes dedujo que dicha fluorescencia se debe a rayos catódicos, que consisten en electrones en movimiento, y, por tanto, también descubrió la presencia de electrones en los átomos.
Al final del cono de vidrio, una banda calentada eléctricamente, llamada cátodo, produce electrones. Al lado opuesto, una pantalla tapada de fósforo forma un ánodo el que está conectado al terminal positivo del voltaje (unos cien voltios), del cual su polo negativo está conectado al cátodo.
La Cruz de Malta
Crookes para comprobar la penetrabilidad de rayos catódicos, debe realizar un tercer tubo, el cual llama la cruz de Malta, ya que entre el cátodo y el ánodo está localizado un tercer elemento, una cruz hecha de Zinc, un elemento muy duro.
El experimento consistía en que el rayo se estrellaba contra la cruz y la rodeaba, para posteriormente generar una sombra al final del tubo. Con este tubo es posible demostrar que los rayos catódicos se propagan en línea recta. Una pantalla metálica con forma de cruz de Malta, se dispone de modo que intercepte el haz de los rayos catódicos, produciendo una zona de sombra sobre la pantalla que satisface las leyes de la propagación de las ondas rectilíneas.
Aplicación del Tubo de pantalla
El Tubo de Crookes es un cono de vidrio con 1 ánodo y 2 cátodos. Es una invención pero mas en parte una innovacion del científico William Crookes en el siglo XIX, y es una versión más evolucionada del desarrollo del Tubo de Geissler.
Descripción y utilización
Consiste en un tubo de vacío por el cual circulan una serie de gases, que al aplicarles electricidad adquieren fluorescencia, de ahí que sean llamados fluorescentes. A partir de este experimento (1895) Crookes dedujo que dicha fluorescencia se debe a rayos catódicos, que consisten en electrones en movimiento, y, por tanto, también descubrió la presencia de electrones en los átomos.
Al final del cono de vidrio, una banda calentada eléctricamente, llamada cátodo, produce electrones. Al lado opuesto, una pantalla tapada de fósforo forma un ánodo el que está conectado al terminal positivo del voltaje (unos cien voltios), del cual su polo negativo está conectado al cátodo.
La Cruz de Malta
Crookes para comprobar la penetrabilidad de rayos catódicos, debe realizar un tercer tubo, el cual llama la cruz de Malta, ya que entre el cátodo y el ánodo está localizado un tercer elemento, una cruz hecha de Zinc, un elemento muy duro.
El experimento consistía en que el rayo se estrellaba contra la cruz y la rodeaba, para posteriormente generar una sombra al final del tubo. Con este tubo es posible demostrar que los rayos catódicos se propagan en línea recta. Una pantalla metálica con forma de cruz de Malta, se dispone de modo que intercepte el haz de los rayos catódicos, produciendo una zona de sombra sobre la pantalla que satisface las leyes de la propagación de las ondas rectilíneas.
Aplicación del Tubo de pantalla
Suscribirse a:
Comentarios (Atom)

